Teses e dissertações

Mestrado
Engenharia Informática
Título

Assessing NER tools for dialogue data anonymization

Autor
Pereira, Miguel Alexandre da Silva Sarmento Falco
Resumo
pt
Com o aumento do número de organizações que processam dados sensíveis, aumenta também a necessidade de as empresas assegurarem a privacidade dos seus clientes. No entanto, os métodos de segurança e proteção de dados sensíveis envolvem, frequentemente, procedimentos manuais ou semi-automáticos, os quais consomem muitos recursos e são propensos a erros. Esta tese aborda anonimização de dados, centrando-se em modelos de Reconhecimento de Entidades Mencionadas. Em particular, investigamos e comparamos vários modelos de Reconhecimento de Entidades Mencionadas para a língua portuguesa para anonimizar automaticamente dados não estruturados. Na abordagem de aprendizagem automática foram utilizados os modelos do SpaCy, STRING, WikiNEuRal e RoBERTta com o intuito de identificar classes como Pessoa, Localização e Organização. Contudo, a abordagem baseada em regras procura identificar classes como NIF, Email, Matrícula de carro e até mesmo Código Postal. Consequentemente, foi construída uma ferramenta em Flask, capaz de processar dados não estruturados e anonimizá-los, mais especificamente, capaz de, dada uma string (que simule uma mensagem), anonimizar o seu conteúdo sensível automaticamente. Esta ferramenta combina diferentes técnicas para a Identificação e Extração de Entidades Mencionadas para a língua portuguesa, baseando-se em modelos de regras e de aprendizagem automática. A junção de ambos os modelos de regras e aprendizagem automática na mesma ferramenta foi essencial para conseguirmos abranger mais classes sensíveis para anonimização, sendo que os resultados calculados para a extração de entidades da ferramenta contruída neste trabalho, engloba os resultados para as três classes calculadas com o modelo SpaCy, com a adição dos modelos de regras criados.
en
As the number of organizations processing sensitive data grows, so does the need for businesses to protect and ensure the privacy of their customers. However, the prevailing methods for protecting sensitive data often involve manual or semi-automatic procedures, which can be resource-intensive and error-prone. This dissertation addresses data anonymization by focusing on Named Entity Recognition (NER) models. Particularly, we investigate and compare various NER models for the Portuguese language to automatically and effectively anonymize unstructured data. The models SpaCy, STRING, WikiNEuRal and RoBERTta are used in the machine learning approach with the goal of identifying classes such as Person, Location, and Organization. On the other hand, the rule-based approach seeks to identify classifications such as NIF, Email, Car Plate and even Postal Code. Additionally, it was created a Flask API tool capable of processing unstructured data and anonymizing it, more specifically, given a string that simulates a message, automatically anonymize the message content that might be considered as sensitive. This tool combines many techniques for identifying and extracting mentioned entities for the Portuguese language, based on rule models and machine learning. The combination of both rule-based and machine learning models in the same tool was crucial to enable the ability to encompass more sensitive classes for anonymization. The results calculated for the extraction of entities from the tool built in this work encompasses the results for the three classes calculated with the SpaCy model, with the addition of the results calculated for the rule-models created.

Data

15-jan-2024

Palavras-chave

Reconhecimento de Entidades Mencionadas
Named entity recognition
Sensitive data
Dados sensíveis
Processamento de linguagem natural - -- NLP Natural language processing
Data anonymization
Entities extraction
Artificial
Anonimização de dados
Extração de entidades

Acesso

Acesso livre

Ver no repositório  
Voltar ao topo