ATENÇÃO: Esta página foi traduzida automaticamente pelo Google Translate. Isto pode ter consequências inesperadas no conteúdo apresentado e, portanto, não nos responsabilizamos pelo resultado dessa tradução automática.


ATTENTION: this page has been automatically translated by Google Translate. This can have unexpected consequences and, therefore, we do not take responsibility for the result of that automatic translation.

menu
menu close
MestradoMestrado em Engenharia de Telecomunicações e Informática

Autonomous environmental protection drone

Autor
Saraiva, Carlos Miguel Domingues
Data de publicação
24 Feb 2021
Acesso
Acesso livre
Palavras-chave
Ambiente
Environment
Unmanned aerial vehicles
Convolutional neural network
Rede neuronal convolucional
Autonomous
Forest fire
Fire detection
Real time kinematics
Veículos aéreos não tripulados
Fogo florestal
Deteção de fogo
Posicionamento cinemático em tempo real
Resumo
PT
Durante o verão, os incêndios florestais constituem a principal razão do desflorestamento e dos danos causados às casas e aos bens das diferentes comunidades de todo o mundo. A utilização de veículos aéreos não tripulados (VANTs), em inglês denominados por Unmanned Aerial Vehicles (UAVs) ou Drones, aumentou nos últimos anos, tornando-os uma excelente solução para tarefas difíceis como a conservação da vida selvagem e prevenção de incêndios florestais. Um sistema de deteção de incêndio florestal pode ser uma resposta para essas tarefas. Com a utilização de uma câmara visual e uma Rede Neuronal Convolucional (RNC) para processamento de imagem com um UAV pode resultar num eficiente sistema de deteção de incêndio. No entanto, para que seja possível ter um sistema completamente autónomo, sem intervenção humana, para observação e deteção de incêndios durante 24 horas, numa dada área geográfica, requer uma plataforma e procedimentos de recarga automática. Esta dissertação reúne o uso de tecnologias como RNCs, posicionamento cinemático em tempo real (RTK) e transferência de energia sem fios (WPT) com um computador e software de bordo, resultando num sistema totalmente automatizado para tornar a vigilância florestal mais eficiente e, ao fazê-lo, realocando recursos humanos para outros locais, onde estes são mais necessários.
EN
During the summer, forest fires are the main reason for deforestation and the damage caused to homes and property in different communities around the world. The use of Unmanned Aerial Vehicles (UAVs, and also known as drones) applications has increased in recent years, making them an excellent solution for difficult tasks such as wildlife conservation and forest fire prevention. A forest fire detection system can be an answer to these tasks. Using a visual camera and a Convolutional Neural Network (CNN) for image processing with an UAV can result in an efficient fire detection system. However, in order to be able to have a fully autonomous system, without human intervention, for 24-hour fire observation and detection in a given geographical area, it requires a platform and automatic recharging procedures. This dissertation combines the use of technologies such as CNNs, Real Time Kinematics (RTK) and Wireless Power Transfer (WPT) with an on-board computer and software, resulting in a fully automated system to make forest surveillance more efficient and, in doing so, reallocating human resources to other locations where they are most needed.

Relacionadas